

STRUCTURE AND BONDING IN ORGANIC COMPOUNDS

1.1 BRIEF REVIEW OF ATOMIC STRUCTURE Atomic Orbitals

Figure 1. 1 Shapes of 2s and 2p Oribtals

(a) An orbital is a boundary surface enclosing a volume where electrons can be located with 90% probability. An s orbital has a spherical boundary surface.(b) Boundary surfaces of the three mutually perpendicular 2p orbitals. Each orbital can hold a maximum of two electrons. The + and - signs on the orbitals refers to the phase of the orbital, *not* to the charge of the orbital.

1.1 BRIEF REVIEW OF ATOMIC STRUCTURE Atomic Orbitals

Table 1.1 Electron Configurations of First and Second Period Elements

Element	Atomic Number	1s	2s	2p _x	2 p _y	2p _z	Electron Configuration
Н	1	1					$1s^{1}$
He	2	2					$1s^{2}$
Li	3	2	1				$1s^2 2s^1$
Be	4	2	2				$1s^2 2s^2$
В	5	2	2	$1(\uparrow)$			$1s^2 2s^2 2p^1$
С	6	2	2	1 (1)	1 (1)		$1s^2 2s^2 2p^2$
Ν	7	2	2	1 (1)	1 (1)	1 (↑)	$1s^2 2s^2 2p^3$
0	8	2	2	$2(\uparrow\downarrow)$	1 (1)	1 (↑)	$1s^2 2s^2 2p^4$
F	9	2	2	2 (↑↓)	2 (↑↓)	1 (↑)	$1s^2 2s^2 2p^5$
Ne	10	2	2	2 (↑↓)	2 (↑↓)	2 (↑↓)	$1s^2 2s^2 2p^6$

1.2 ATOMIC PROPERTIES Atomic Radius

Figure 1.2 Atomic radii in picometers,	H 37						
pm (10 ⁻¹² m)	Li	Be	В	С	Ν	0	F
	152	111	88	77	70	66	64
	Na	Mg	Al	Si	Р	S	Cl
	186	160	143	117	110	104	99
							Br
							114
							Ι

133

1.2 ATOMIC PROPERTIES Electronegativity

Figure 1.3 Electronegativity

Η						
2.1						
Li	Be	B	С	Ν	0	F
1.0	1.5	2.0	2.5	3.0	3.5	4.0
Na	Mg	Al	Si	Р	S	Cl
0.9	1.2	1.5	1.8	2.1	2.5	3.0
						Br

2.8

Ι

2.5

1.3 IONIC AND COVALENT BONDS Ionic Bonds

Figure 1.4 Sodium chloride Crystal

In the ionic solid, sodium chloride, each sodium ion is surrounded by 6 chloride ions and each chloride ion is surrounded by 6 sodium ions.

1.3 IONIC AND COVALENT BONDS Covalent Bonds

number of bonds formed the atom in neutral compounds.

1.3 IONIC AND COVALENT BONDS Polar Covalent Bonds

1.4 STRATEGIES FOR WRITING LEWIS STRUCTURES

Atom

Electrons present

Electrons needed

hydrogen	2 for each one	0
carbon	4 x 2= 8	0
nitrogen	2 x 2= 4	4
oxygen	2	6

Electrons presentElectrons needed2 for each one0 $4 \ge 2 = 8$ 02 + 4 = 62

4

nitrogen oxygen

Atom

hydrogen

carbon

4

1.5 FORMAL CHARGE

1.6 MOLECULAR GEOMETRY Bond Lengths

Table 1.3						
Average Bond Lengths						
Structural Unit	Bond length					
	(pm)					
H—C	110					
H—N	98					
H—O	94					
H—F	92					
H—S	132					
H—Cl	127					
H—Br	142					
H—I	161					
C—C	154					
C—N	147					
С—О	143					
C—F	141					
C—Cl	176					
C—Br	191					
C—I	210					
C=C	134					
C=O	122					
alkyne C≡C	121					
cyano (C≡N)	115					

1.6 MOLECULAR GEOMETRY Drawing Structures

Figure 1.5 Structural Formulas and Molecular Models

(a) Perspective Structure

(b) Ball-and-stick Model

(c) Space-filling Model

1.7 RESONANCE STRUCTURES

Resonance structures of carboxylate ion

1.7 RESONANCE STRUCTURES Nonequivalent Resonance Structures

1.8 VALENCE SHELL ELECTRON PAIR REPULSION THEORY

1.8 VALENCE SHELL ELECTRON PAIR REPULSION THEORY

Figure 1.6 VSEPR Model Predicts Geometry Around a Central Atom

All electron pairs in methane, aminomethane, and methanol are directed to the corners of a tetrahedron. However, the geometry around the nitrogen atom in aminomethane is described as trigonal pyramidal; the geometry around the oxygen atom in methanol molecule is angular.

1.9 DIPOLE MOMENTS Determining Charge Separation

1.9 DIPOLE MOMENTS

Table 1.4					
Average Dipole Moments (D)					
Structural	Bond Moments				
Unit ¹	(D)				
H—C	0.4				
H—N	1.3				
H—O	1.5				
H—F	1.7				
H—S	0.7				
H—Cl	1.1				
H—Br	0.8				
H—I	0.4				
C—C	0.0				
C—N	0.2				
C—O	0.7				
C—F	1.4				
C—Cl	1.5				
C—Br	1.4				
C—I	1.2				
C=O	2.3				
C≡N	3.5				

¹ The more electronegative atom in the bond is on the right.

1.9 DIPOLE MOMENTS Bond Polarity and Molecular Geometry

Blue arrow: direction of net dipole moment.

The bond moments cancel and there is no net polarity.

The bond moments do not cancel and there is a net polarity.

Dichloromethane

1.10 MOLECULAR ORBITAL THEORY Atomic Orbitals

Figure 1.7 Atomic Orbitals

(a) The wave function of an s orbital is spherically symmetrical. The sign of the wave function does not change within the orbital. There is a 90% probability of finding a 1s electron within the shaded area.

(b) The sign of the wave function for a $2p_y$ orbital is positive above the x-z plane and negative below the x-z plane. A node exists at a point between the lobes of the orbital, and the entire x-z plane is a nodal plane. There is a 0% probability of finding a $2p_y$ electron in the x-z plane.

Х

1.10 MOLECULAR ORBITAL THEORY Molecular Orbitals

Figure 1.8 Linear Combinations of Atomic Orbitals

(a) When the is atomic orbitals of hydrogen atoms overlap, they may do so with reinforcement of the wave functions. The constructive interaction—that is, the addition of wave functions—gives a sigma (σ) molecular orbital. The electron density between two nuclei is located in this cylindrically symmetrical region.

(b) When two 2p orbitals overlap side-by-side, they may do so with reinforcement of the wave functions. The constructive interaction—that is, the addition of wave functions—results in a pi (π) molecular orbital.

1.11 THE HYDROGEN MOLECULE

Figure 1.9 Plot of Energy vs. Internuclear Separation for the Hydrogen Molecule

An energy minimum for the interaction of two hydrogen atoms occurs when they are 74 pm apart. This minimum corresponds to bond formation between the two atoms. If the nuclei move closer, the energy rapidly increases because the two positively charged nuclei repel each other more.

1.11 THE HYDROGEN MOLECULE

Figure 1.10 Energy of Bonding and Antibonding Molecular Orbitals

(a) Two molecular orbitals are formed by combining two 1s hydrogen orbitals. The bonding molecular orbital, σ , is lower in energy that the antibonding molecular orbital, σ^* . There is no electron density between the two nuclei in the antibonding orbital. (b) Molecular orbital view of hydrogen bonding and antibonding orbitals.

1.12 BONDING IN CARBON COMPOUNDS

Figure 1.11 sp³-Hybridized Carbon Atom

(a) The original set of four atomic orbitals on carbon are mixed, or hybridized to give four new sp³-hybridized atomic orbitals.
(b) We have represented the new hybrid orbitals with a new color to emphasize the notion that the hybrid orbitals replace the original unhybridized orbitals.

Figure 1.12 sp³ Hybridized Carbon in Methane

The shapes of the sp³ hybrid atomic orbital in methane. The outer boundary encloses a region of space with a 90% probability of finding an electron. The four identical sp³ hybrid orbitals point at the corners of a regular tetrahedron.

Figure 1.13 Bonding and Structure of Ethane and Conformations of Ethane

(a) The bonding molecular orbital of the C—C bond in ethane is cylindrically symmetrical.

(b) Rotation of the two methyl groups about the C—C bond axis maintains the bond, but changes the relative positions of the C—H bonds.

Two conformations of ethane

Figure 1.14 sp² Hybrid Orbitals

(a) Schematic diagram of orbital hybridization. (b) Shapes of sp^2 hybrid orbitals. The shape of an sp^2 hybrid atomic orbital in ethene. The outer boundary encloses a region of space with a 90% probability of finding an electron. The three identical sp^2 hybrid orbitals point at the corners of a triangle.

side view: three sp² hybrid orbitals and 2p orbital

Figure 1.15 Bonding and Structure in Ethene

trans-1,2-dichloroethene

μ = 1.9 D

1.16 sp HYBRIDIZATION OF CARBON IN ETHYNE

Figure 1.16 sp-Hybridized Carbon Atom

side view: two sp hybrid orbitals and two 2p orbitals

1.16 sp HYBRIDIZATION OF CARBON IN ETHYNE

Figure 1.17 Structure and Bonding in Ethyne

Bonding in ethyne: the σ bonds are colinear; the π bonds lie above and below, and in front and behind the carbon-carbon sigma bond.

Ball-and-stick model of ethyne

Electron density map of ethyne. Although the molecule is nonpolar overall, each C—H bond is polar. The carbon has a small partial positive charge (shaded red), and the hydrogen has an equal and opposite partial negative charge (shaded ed blue).

1.17 EFFECT OF HYBRIDIZATION ON BOND LENGTH AND BOND STRENGTH

Table 1.5 Average Bond Energies in Ethane, Ethene and Ethyne

Bond Type	Bond Energy (kJ mole ⁻¹)
H—C (sp ³)	410
H—C (sp^2)	422
H—C (sp)	523
C—C (sp ³)	347
$C=C(sp^2)$	610
$C\equiv C (sp)$	837

Table 1.6 Average Bond Lengths (pm)

H—C (sp ³)	109
H—C (sp^2)	107
H—C (sp)	105
C—C (sp^3)	154
$C=C(sp^2)$	133
$C \equiv C (sp)$	120

1.18 HYBRIDIZATION OF NITROGEN Figure 1.18 sp³-Hybridized Nitrogen Atom

1.18 HYBRIDIZATION OF NITROGEN Figure 1.19 sp²-Hybridized Nitrogen Atom

side view: three sp² hybrid orbitals and 2p orbital on nitrogen Ball-and-Stick Structure of formaldimine, the nitrogen analog of ethene. The nitrogen and carbon atoms are both sp²-hybridized.

1.18 HYBRIDIZATION OF NITROGEN

Figure 1.20 sp-Hybridized Nitrogen Atom

side view: two sp hybrid orbitals and two 2p orbitals

The central nitrogen is sp-hybridized and the terminal nitrogen and carbon atoms are sp²-hybridized. The terminal nitrogen has two nonbonded electron pairs, and it has a negative charge. Diazomethane is a highly explosive yellow gas.

1.19 HYBRIDIZATION OF OXYGEN

1.19 HYBRIDIZATION OF OXYGEN

Figure 1.23 sp²-Hybridized Oxygen Atom

and 2p orbital on oxygen

Summary of Orbital Hybridization and Its Relation to VSEPR Theory

Table 1.7 Hybridization, Electron Pair Geometry, and Molecular, Geometry

Hybridization	Electron Pair Geometry	Molecular Geometry	Nonbonded Electrons	σ bonds	π bonds	Example
sp	Linear	Linear	2 unpaired (e.g. $2p_y^{-1}$, $2p_z^{-1}$ on adjacent atoms)	2	2	Ethyne
sp ²	Trigonal planar	Trigonal Planar	1 (e.g. $2p_z^{-1}$, $2p_z^{-1}$ on adjacent atoms)	3	1	Ethene
sp ³	Tetrahedral	Tetrahedral	0	4	0	Methane
sp ³	Tetrahedral	Pyramidal	2	3	0	Ammonia
sp ³	Tetrahedral	Angular	4 (two pairs)	2	0	Water
Reactive Inte	rmediates					
sp ²	Trigonal Planar	Trigonal Planar	none	3	0	Carbocation
sp ²	Trigonal Planar	Trigonal Planar	1	3	0	Carbon Radical
sp ³	Tetrahedral	Pyramidal	2	3	0	Carbanion